Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Molecules ; 28(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: covidwho-20243613

RESUMEN

Scutellaria barbata D. Don (SB, Chinese: Ban Zhi Lian), a well-known medicinal plant used in traditional Chinese medicine, is rich in flavonoids. It possesses antitumor, anti-inflammatory, and antiviral activities. In this study, we evaluated the inhibitory activities of SB extracts and its active components against HIV-1 protease (HIV-1 PR) and SARS-CoV2 viral cathepsin L protease (Cat L PR). UPLC/HRMS was used to identify and quantify the major active flavonoids in different SB extracts, and fluorescence resonance energy transfer (FRET) assays were used to determine HIV-1 PR and Cat L PR inhibitions and identify structure-activity relationships. Molecular docking was also performed, to explore the diversification in bonding patterns of the active flavonoids upon binding to the two PRs. Three SB extracts (SBW, SB30, and SB60) and nine flavonoids inhibited HIV-1 PR with an IC50 range from 0.006 to 0.83 mg/mL. Six of the flavonoids showed 10~37.6% inhibition of Cat L PR at a concentration of 0.1 mg/mL. The results showed that the introduction of the 4'-hydroxyl and 6-hydroxyl/methoxy groups was essential in the 5,6,7-trihydroxyl and 5,7,4'-trihydroxyl flavones, respectively, to enhance their dual anti-PR activities. Hence, the 5,6,7,4'-tetrahydroxyl flavone scutellarein (HIV-1 PR, IC50 = 0.068 mg/mL; Cat L PR, IC50 = 0.43 mg/mL) may serve as a lead compound to develop more effective dual protease inhibitors. The 5,7,3',4'-tetrahydroxyl flavone luteolin also showed a potent and selective inhibition of HIV-1 PR (IC50 = 0.039 mg/mL).


Asunto(s)
COVID-19 , VIH-1 , Scutellaria , Extractos Vegetales/química , Flavonoides/farmacología , Péptido Hidrolasas , Scutellaria/química , Catepsina L , Simulación del Acoplamiento Molecular , ARN Viral , SARS-CoV-2 , Endopeptidasas , Relación Estructura-Actividad
2.
Molecules ; 26(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1287269

RESUMEN

We measured and studied the growth parameters and the qualitative and quantitative composition of the flavones of hairy roots of the Scutellaria genus: S. lateriflora, S. przewalskii and S. pycnoclada. Hairy roots were obtained using wild-type Agrobacterium rhizogenes A4 by co-cultivation of explants (cotyledons) in a suspension of Agrobacterium. The presence of the rol-genes was confirmed by PCR analysis. The hairy roots of the most studied plant from the Scutellaria genus, S. baicalensis, were obtained earlier and used as a reference sample. HPLC-MS showed the predominance of four main flavones (baicalin, baicalein, wogonin and wogonoside) in the methanol extracts of the studied hairy roots. In addition to the four main flavones, the other substances which are typical to the aerial part of plants were found in all the extracts: apigenin, apigetrin, scutellarin and chrysin-7-O-ß-d-glucuronide. According to the total content of flavones, the hairy roots of the studied skullcaps form the following series: S. przewalskii (33 mg/g dry weight) > S. baicalensis (17.04 mg/g dry weight) > S. pycnoclada (12.9 mg/g dry weight) > S. lateriflora (4.57 mg/g dry weight). Therefore, the most promising producer of anti-coronavirus flavones is S. przewalskii.


Asunto(s)
Antivirales/química , Flavonas/química , Scutellaria/química , Agrobacterium/crecimiento & desarrollo , Agrobacterium/metabolismo , Antivirales/aislamiento & purificación , Antivirales/farmacología , Cromatografía Líquida de Alta Presión , Flavonas/aislamiento & purificación , Flavonas/farmacología , Células Vegetales/metabolismo , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Scutellaria/crecimiento & desarrollo , Scutellaria/metabolismo , Espectrometría de Masas en Tándem
3.
Viruses ; 13(5)2021 05 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1224250

RESUMEN

In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-CoV-2 infection through the inhibition of the proteases playing important functions in the infection by SARS-CoV-2. FRET assay was applied to investigate the inhibitory effects of SB on the two proteases involved in SARS-CoV-2 infection, Mpro and TMPRSS2. Additionally, to measure the potential effectiveness of SB treatment on infection inhibition, cellular models based on the Calu3 and VeroE6 cells and their TMPRSS2- expressing derivatives were assessed by viral pseudoparticles (Vpp) infection assays. The experimental approaches were conjugated with LC/MS analyses of the aqueous extracts of SB to identify the major constituent compounds, followed by a literature review to determine the potential active components of the inhibitory effects on protease activities. Our results showed that SB extracts inhibited the enzyme activities of Mpro and TMPRSS2. Furthermore, SB extracts effectively inhibited SARS-CoV-2 Vpp infection through a TMPRSS2-dependent mechanism. The aqueous extract analysis identified six major constituent compounds present in SB. Some of them have been known associated with inhibitory activities of TMPRSS2 or Mpro. Thus, SB may effectively prevent SARS-CoV-2 infection and replication through inhibiting Mpro and TMPRSS2 protease activities.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/metabolismo , Extractos Vegetales/farmacología , Serina Endopeptidasas/metabolismo , Animales , COVID-19/metabolismo , Línea Celular , Chlorocebus aethiops , Proteasas 3C de Coronavirus/efectos de los fármacos , Humanos , Pulmón/virología , Pandemias , Péptido Hidrolasas , Peptidil-Dipeptidasa A/metabolismo , Extractos Vegetales/metabolismo , Proteolisis , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Scutellaria , Serina Endopeptidasas/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA